

Request for Information

Benchmarking Instructions

Department of Defense

High Performance Computing Modernization Program

June 2003

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
2

1. Background... 1
2. Some Changes from Previous years.. 2
3. Operational Instructions ... 2

3.1 Benchmark Structure... 2
3.1.1 Synthetic Performance Tests .. 2
3.1.2 Application Tests .. 2
3.1.3 Allowed Changes.. 2

3.2 Configuration Disk Requirements .. 3
3.2.1 Configuration for the I/O tests.. 3

4. Preparing the System Timing Tables: ... 4
4.1 Benchmark Timing Tables.. 4

4.1.1 Synthetic Test Benchmark.. 4
4.1.2 Applications Benchmark .. 4

4.2 Output Requirements... 4
4.3 Information to Submit with Results.. 5

4.3.1 Configuration Certification... 5
4.3.2 Software Configuration .. 5
4.3.3 Hardware Configuration... 6
4.3.4 Hardware Configuration and Settings ... 6
4.3.5 Software Configuration and Settings... 6

4.4 Submitting Results... 7
4.5 System Configuration Changes .. 7
4.6 Detailed Hardware Description... 7
4.7 Additional Required Documentation.. 8
4.8 Use, Copying, and Transfer Restrictions.. 8

5. Benchmark Description, Requirements, and Resource Estimates...10
5.1 Synthetic Codes ...10

5.1.1 I/O Tests ..11
5.1.2 Operating System Tests ..14
5.1.3 Memory Tests..17
5.1.4 Network Tests ...20
5.1.5 CPU Tests..22

5.2 Instructions for Application Tests...25
5.2.1 Technical Point of Contact for Application Tests...25
5.2.2 Application Test Overview ..25
5.2.3 Directory Structure..26
5.2.4 Directions for Application Tests ..28
5.2.5 Application Test Cases ...28
5.2.6 Required Documentation..28

6. Appendix A: Required Table submissions and formats...30
6.1 Configuration Tables ...30
6.2 Application Benchmark Results ...40

 High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
1

1. Background

The Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP), managed
by the DoD High Performance Computing Modernization Program Office (HPCMPO), requires enhanced
functionality and capability for its shared resource centers. The purpose of this request for information via these
benchmark instructions is to provide the HPCMP with accurate performance information on available HPC
capabilities to be considered under the HPCMP’s Technology Insertion 2004 (TI-04) activity. The intent of the
benchmark suite is to provide a set of program source code listings, makefiles, runtime scripts, input files, and
validated results files which represents the type of computational work performed on HPCMP resources. The
overall goal of the benchmark activity is to ensure that HPC systems acquired for HPCMP shared resource
centers are matched to DoD HPC user requirements. Therefore, some of the benchmark requirements will
configure the system as close to an operational configuration as possible. An operationally sound configuration
will provide a better understanding of how the proposed HPC system will perform once installed. All HPC
systems to be considered under TI-04 must provide timing and accuracy results for the distributed benchmark
suite of codes. These codes are to be run individually and meet the performance requirements set forth in this
document

The goal of this benchmark is to provide the best operational configuration for the sites, not the best benchmark
configuration. Vendors are strongly encouraged to document how their proposed configuration can be used
operationally and are required to document where they have configured the system differently for this benchmark.

No longer will application tests be required on systems with specific numbers of processors. Instead, we have
established a DoD standard performance requirement, in terms of a time-to-solution, for each application test.
Specifically, each application has at one input data test case called the “standard” case, and most have a second
case called the “large” case. Each test case has an associated target time obtained by running that case on the
Government’s IBM POWER4 SP at the NAVO MSRC. A vendor should supply elapsed wall times for each test
case on three distinct processor counts. The ratio of the maximum processor count to the minimum processor
count must be at least two. At least one of the three reported times must be from an actual run on some model of
the proposed hardware, or a closely related system; the remaining two reported times may be estimated. The
same degree of reliability will be attached to estimated times as to actual times. At least one of the three reported
times must be less than or equal to one half of the Government-specified target time (i.e., “twice as fast”).
Vendors are cautioned, particularly if this time is extrapolated, that they will have to demonstrate the reported
level of performance if their equipment is installed. Finally, it is important that the runs supporting the actual
reported times follow the Government’s output convention (see section 4.2 for details).

Vendors are required to provide timing output and configuration output in a common way to speed analysis and
comparison. This common output is described in Appendix A.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
2

2. Some Changes from Previous years

This year some changes have been made to the benchmark process and codes:

1. A new synthetic code, MEMBench, will replace last years MEMBench and
MEMBench2.

2. OSBench is reduced to a maximum of 64 processors.

3. Some application benchmarks have been replaced with other codes that are more
representative of the required workload for TI-04.

3. Operational Instructions

The vendor must abide by all processing instructions. Any deviation, questions of interpretation,
and/or proposed changes must be formally clarified and approved with the DoD HPCMPO
evaluation team in writing prior to running the benchmark and submitting results. Any results
submitted which do not follow the operational instructions will not be evaluated.

3.1 Benchmark Structure

The benchmark is divided into 2 parts:

1. Hardware performance and system tests (synthetic tests)

2. Application tests

3.1.1 Synthetic Performance Tests

These tests are to be run one time with a standard scheduler with no changes to the default priorities
used by the scheduler. Special rules apply to the I/O tests.

3.1.2 Application Tests

The application tests are multiple test cases using a suite of codes that are to be run using the
standard system scheduler with no changes to the default priorities used by the scheduler with a
defined range of performance for application codes (see definitions in section 5.2.5 for each code)
on a dedicated machine, i.e., with a minimal number of processes running besides the application.
Please see section Appendix A for presentation of results.

3.1.3 Allowed Changes

3.1.3.1 Source Code Changes

Vendors are only allowed to change the source code to the extent needed to get the program to
execute and provide correct output. If a vendor wants to submit additional runs with source code

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
3

modifications in order to improve performance, they will be evaluated. The improved performance
will be scored if the evaluation shows the improvement can be implemented in the actual code. The
vendor must provide timing for both the modified source code and the original source code.

All source code changes, including those allowed below, must be fully documented. All software changes
become the property of the DoD HPCMPO / government and may be incorporated into and used within existing
codes.

3.1.3.2 Makefile

Makefiles may be changed to allow:

1. Vendors to add libraries during the build process.

2. Vendors to add compiler option(s) for each code, but only 1 version of each compiler (C,
C++, and F90) may be used. Use of multiple versions of compilers is prohibited.

3. Vendors are allowed to change the definition and location of the compilers. For example:
CC=/opt/bin/cc.

4. The rules: 1, 2, & 3 above also apply to linker flags. Those changes are stated in the
application sections (see section 5.2.4 used to build the executable on various platforms).

3.1.3.3 Run script changes

Scripts may not be changed except for those changes necessary to execute the code. Examples of
such changes may include modifying the path names of variables, changing the number of CPUs,
and the addition of environment variables. All changes to the script must be POSIX compliant.

The vendor MUST provide detailed documentation on any changes to the run scripts, documenting
changes and reasons why the changes were made.

3.1.3.4 Documenting Changes

All changes must be documented, including allowed changes. The documentation must describe the
rationale for each change, and for each compiler option added, detailed documentation must be
provided. Documentation for use of environment variables must be detailed, and the rationale for
the addition must be provided.

3.2 Configuration Disk Requirements

As the system is to be configured as close as possible to an operational system, the following will
be required as part of the disk configuration and will be evaluated.

3.2.1 Configuration for the I/O tests

The I/O test does not need to be run on the configured system, but can be run on a separate node on
an external system (same system type). This is suggested given the expected run time.

The IO test is benchmarking the file system; therefore, the vendor must run the benchmark on a
fixed configuration. The benchmark can, however, be run a second time on a different

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
4

configuration, with the stipulation that the second configuration must be described in detail,
including the cost differential between the two systems.

Before running the disk I/O test suite, the file system being used is to be created using 8 Fibre
Channel RAID devices, volume manager, file system, and/or other appropriate configuration
settings. These settings are to be configured only 1 time after booting the system and are not to be
changed at any time during the benchmark. The I/O test can be run on a separate system from the
computational systems, but that system must be part of a node that will be provided as part of the
vendor computational configuration.

For example, if the vendor runs the I/O benchmark on a 4-processor system with 8 PCI buses, that
configuration must be used within the configuration of the computational system. The
configuration requirement is at least one-fourth of the nodes must have 4 processors with 8 PCI
buses.

4. Preparing the System Timing Tables:

4.1 Benchmark Timing Tables

Timing tables in Appendix A and provided in softcopy are to be filled out and returned as part of
the benchmark submission for each benchmark type. Document description is provided in
Appendix A.

4.1.1 Synthetic Test Benchmark

Please provide the output file for each test. All tests must be run with the standard vendor-provided
scheduler. Use of the real-time scheduler or modification to the batch scheduler is NOT
ALLOWED.

4.1.2 Applications Benchmark

The timing tables as described in Appendix A must be completed in the softcopy format provided
(see Appendix A). Table entries are required for each of the application runs for each CPU count.

4.2 Output Requirements

The output requirements for the application benchmarks will be defined individually; see section
5.2 and Appendix A. This includes, but is not limited to, output files to check for correctness,
timing data, etc. Furthermore, a single text file will serve as a summary table of results for the
application benchmark results. These files will be named:

./ded/README.results

As noted above, each job must print out timing information and the information per Appendix A
must be completed. The vendor must also provide the output for the run so the HPCMPO can
verify the accuracy of the data.

Vendors are welcome to provide other data regarding the performance of jobs if they so choose.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
5

4.3 Information to Submit with Results

Three types of information are required to be provided:

1. Configuration certification

2. Hardware configuration and settings

3. Software configuration and settings

4.3.1 Configuration Certification

Any set of hardware and software bid / benchmarked must include a certification from the vendor
that the configuration meets the following criteria and answers the following questions:

1. Hardware configuration is in the vendor’s list of commercially available products

2. Software configuration is in the vendor’s list of commercially available products

3. Hardware and software configuration have been tested together which includes:

a. Microcode

b. Operating system

c. Device drivers for network cards and HBAs

d. Device drivers for fibre channel adapters

e. Scheduler

4. Vendor agrees to take total responsibility including providing development resources to
provide software and microcode fixes for deficiencies found once installed.

4.3.2 Software Configuration

The computer systems software must be the same for each system. Only released, commercially
available, and supported products are acceptable for this test or products that will be released within
six (6) months of the benchmark.

The released software requirement includes, but is not limited to:

1. Operating system

2. Network drivers

3. Network stacks

4. I/O drivers (e.g.. FC-Fabric, SCSI)

5. File system software and/or volume manager

6. Compiler and libraries including I/O libraries, and MPI

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
6

7. All patches or bug fixes
8. Any additional software used as part of the benchmark configuration

Suppliers shall not be permitted to change software configuration of any system while executing
this benchmark suite.

4.3.3 Hardware Configuration

Each configured system shall be documented with the hardware used. Only released, commercially
available, and supported products are acceptable for this test or products that will be released within
six (6) months of the benchmark. This includes, but is not limited to:

1. Memory boards, sections, and/or banks

2. Memory size

3. CPU speed and boards

4. I/O boards

5. Bus speed, both local buses and external buses

6. HBAs including firmware

7. Network adapters including firmware

8. All communications hardware including private channels

9. RAID hardware including: disks, cache, firmware, channels, GBICs, and interfaces

10. Any fibre channel switches, if used

11. Any other hardware used as part of the benchmark configuration

A table is provided in Appendix A that must be completed and provided in both hardcopy and
softcopy.

4.3.4 Hardware Configuration and Settings

Vendor shall use the proposed system(s) with a configuration of their choosing to execute the
benchmark suite, and the delivered system must meet or exceed the performance of the
benchmarked system.

A table is provided in Appendix A that must be completed and provided in both hardcopy and
softcopy.

4.3.5 Software Configuration and Settings

Since no software differences are allowed between machines or between runs, this table only needs
to be completed once for all of the configurations. Any additional information that pertains to the
software configuration should be provided.

A table is provided in Appendix A that must be completed and provided in both hardcopy and
softcopy.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
7

4.4 Submitting Results

The offeror will provide CD-ROMs in machine-readable format with the submission for:

1. All released software used for benchmark tests

2. Patches used in configuration for the benchmark tests

3. Instructions for building and installing the test configuration(s)

4. Results in templates provided in Appendix A for each table in softcopy file

From these CD-ROMs and with provided instructions, the DoD HPCMPO should be able to reload
and rebuild the system(s).

4.5 System Configuration Changes

The System Configuration Table in Appendix A must be completed to document any and all
changes made to the system to run the benchmark. If the vendor reloads the system, only these
configuration changes will be applied to the system to allow it to run the benchmark. This includes,
but is not limited to:

1. Disk format settings

2. Disk configuration settings

3. Kernel cache settings (e.g. name cache, disk cache)

4. Kernel configuration settings (e.g. physical I/O settings)

5. Network stack settings

6. Volume manager and file system layout and configuration

7. Any other system tunables or settings that are used as part of the benchmark

The DoD HPCMPO reserves the right to reject the offeror’s proposal and require a re-test of the
offeror’s system for any undocumented changes. The DoD HPCMPO also reserves the right to
require a Government-attended demonstration at a mutually agreeable time.

4.6 Detailed Hardware Description

The vendors need to provide the following information for each system proposed, as described in
Appendix A:

1. Processor MFLOPs

2. Number of floating point units and types

3. Number of integer units and number of adders

4. Cache size used and cache sizes available

5. Processor speed (MHz)

6. Memory speed

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
8

7. Memory bandwidth or bandwidths for each node type

8. Disk bandwidth

9. Type of architecture (hypercube, torus, etc).

4.7 Additional Required Documentation

The offeror shall provide the following information with the proposal:

1. Completed System Timing Table for each system in the initial target configuration, signed
and certified by the offeror’s representative to be true, complete, and accurate. A
computer file containing a computer-readable copy of each table shall also be provided.

2. Completed Benchmark Summary Table, signed and certified by the offeror’s
representative to be true, complete, and accurate. A computer file containing a computer-
readable copy of each table shall also be provided.

3. Documentation of the application source code changes as follows:

• Listing of each routine changed with all changes clearly marked

• Rationale for each change made

• Comparison of timing runs with and without the change(s)

4. Documentation of all makefile changes as follows:

• Listing of each makefile changed with all changes clearly marked

• Rationale for each change made

5. Documentation of all run script changes as follows:

• Listing of each run script changed with all changes clearly marked

• Rationale for each change made

4.8 Use, Copying, and Transfer Restrictions

The benchmark suite provided by the government / HPCMPO for this program shall be restricted
for use in responses. The use of this benchmark suite for any other purpose is not authorized.
Some of these benchmark codes are subject to export or licensing restrictions. Signed agreements
shall be completed and returned to the Contracting Officer at the address below before these codes
are released by the government, and recipients shall not further release these codes. The
reproduction or distribution of this benchmark suite to any organization other than the originally
intended recipient shall not be authorized except for direct use in responding. Offerors selected
for award shall retain these materials for use during acceptance testing and for measuring upgrade
options.

Create three copies of the results and send one copy to each of the below addresses.

DoD High Performance Computing Office
Attn: Contracting Officer

1110 N. Glebe Rd., Suite 650
Arlington VA 22201

(703) 812-8205

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
9

Instrumental Inc
Attn: Kim Payne
2748 E 82nd St

Bloomington, MN 55425-1365
(952) 345-2822

William A. Ward Jr.

C/o Ms. Daffney Wells
Computer Sciences Corp

3530 Manor Drive, Suite 4
Vicksburg, MS 39180

(601) 634-2512

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
10

5. Benchmark Description, Requirements, and Resource Estimates

5.1 Synthetic Codes

The following codes in this section must be run with one scheduler as documented in section 2.1.1.

• I/O tests

o IO tests are designed to test the file system; therefore, a large amount of data
must be written and fragmented. To ensure that the data does not stay resident
in system memory (RAM), large files in excess of 80 MB must be read and
written.

• OS tests

o The OS tests are designed to test the basic OS functions such as TCP stack and
file operations, while scaling up to the maximum number of processors on a
node.

• Memory tests

o The memory test is designed to determine the memory bandwidth available for
processing as well as make a comparison of this bandwidth to bandwidth
received when performing CPU intensive operations.

• Network tests

o The network tests are designed to determine the interconnect bandwidth
between processors while performing different interprocessor communication
functions such as scatter/gather, and allreduce.

• CPU tests

o The CPU tests are designed to determine the CPU performance on different
mathematical functions. (See section 5.1.5.1.)

Hardware Requirements to Run Synthetic tests

Test Processors

Required

Memory

Required

Comments

CPUBench

Series 100 - 300

1 Minimal
amount outside
cache

CPUBench

Series 500, 600, 700

16 to 512 64K to 4 MB
per processor

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
11

NETBench 16 to 512
processors

Minimal

MEMBench 128 ~ 512 MB per
processor, is
required

Recommend exactly 128 processors

OSBench Maximum
processors in a
node, up to 64
total

Minimal Runs on one node

IOBench 1 Minimal Tests file system; only 1 processor is
required; but requires ~4TB of disk.

The point of contact for all questions on these benchmarks is:

Robert Graham
Instrumental, Inc
605-483-3295
rgraham@instrumental.com

5.1.1 I/O Tests

Since the objective of the I/O tests is to benchmark the file system, a large amount of data is written
out to disk in the form of large files. This will ensure the data is forced out of main system memory
(RAM) – a particular concern when benchmarking architectures with large shared memory. As a
consequence, the overall data set is very large, and the test can therefore, take an extended amount
of time to run. Additional information about the I/O tests can be found in Sections 3.2 and 3.2.1.

5.1.1.1 Descriptions

The I/O benchmark must run on the following configuration:

• 8 Fibre channel RAID controllers

• RAID disks of at least 72 GB

• RAID configuration of 8+1 RAID-5

• File system size of at approximately 4.3 TB

• Server configuration with at least 8 HBAs each connected to a switch or direct connected.
No more than one LUN should be connected to each HBA.

The I/O load provided mimics the I/O requirements for a shared resource center site’s I/O
workloads. The tests are described in the sections below. The test process is:

• Generation of a 2.5 TB file.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
12

• Generation 2 million files, then removal of ½ of files (which will fragment the file
system).

• Run the Multiple Stream test, which will use the data from the above two tests to
determine I/O performance.

Fragmentation of the file system is being done as all sites have seen operational problems with large
file systems.

Note: As mentioned earlier in this document, tunable changes allowed include changes to the script
for preallocation and other command based tunables. No code changes are allowed. Any script
changes must be documented.

5.1.1.2 2.5 TB Test

For this test, 16 MB I/O requests will be written to a single file that is 2.5 TB in size. This test will
be timed. As stated above, no code changes are allowed. The data from this test will be utilized in
the Multiple Stream test described in section 5.1.1.4.

5.1.1.3 Fragmentation

Over two million files of size 32 KB will be written with a 32 KB request size. These files will be
written in 2000 directories with 1000 files per directory. The total data size is 64 GB. After the
files are written, ½ of the files will be removed. This test will be timed. As stated above, no code
changes are allowed. The data from this test will be utilized in the Multiple Stream test described in
section 5.1.1.4.

5.1.1.4 Multiple Stream test

This test utilizes the data created in sections 5.1.1.2 and 5.1.1.3 above. For this test, the tests in the
table below will be running in parallel. All of the following are to be run on the same file system.
Output from the test is total wall time and CPU, user and system time. As stated above, no code
changes are allowed.

Tests Requests Sizes

Write single 50 GB file forward; read forward 64K

Write 200 GB file forward; read forward 1MB

Write 10 MB file backward; read backward 64K

Write 10 MB random read/write-modify; random read 64K

Read part of the 2.5 TB file seek 200 GB read 100 GB 1MB

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
13

5.1.1.5 Running the tests

All tests are run from a single interactive script and can be run in the background. The script do_io
is to be run from the file system that was mkfs’ed and mounted which is called /usr/tmp/dodbench.

The following must be in your default path:

• Compiler

• Default command such as make

Before performing a make on the source code, ensure that the proper flags are included in the
makefile for your platform. These flags must have 64-bit options as well.

5.1.1.6 Running the tests independently

The programs iobench, mktree and rmtree can be run independently of the script mentioned above.
The usage messages from the programs are provided below:

IOBENCH

$ iobench –h

Usage: iobench [-h] [-r report_file] -s file_size(k,m,g) –b block_size(k,m,g) -i operation [-S
stride(k,m,g)] data_file

Operations are:

sw: sequential write

bw: backward write

sr: sequential read

rr: random read

br: backward read

rw: random read_write

tw: test write

MKTREE

mktree creates a directory with 1000 files under it. The script do_io controls the number of
directories. The arguments for mktree are “file_system” and “index.” “File_system” is where you
want the directory to be created and the “index” value is used to name the directory. The directory
name will have the format “0-index-0.”

$./mktree

Usage: mktree file_system index

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
14

RMTREE

rmtree removes a directory with 1000 files under it created by mktree. The script do_io controls the
number of directories. The arguments for rmtree are “file_system” and “index.” “File_system” is
where the directory to be removed is located, and the “index” value points to a directory name. The
directory name is in the format “0-index-0.”

./rmtree

Usage: rmtree file_system index

5.1.1.7 Results

Results will be put in iobench3/results. Please provide that file with your submission.

5.1.2 Operating System Tests

The OS benchmark tests the ability of the OS to transfer data and perform file operations. These
operations are required functions at the MSRCs. This test runs quickly on some architectures, but
is time consuming on others. This test was reduced as far as possible (in TI-03) to still receive
valuable results. This test was not changed in TI-04, except to limit the maximum number of
processors to 64.

5.1.2.1 Descriptions

The Operating System (OS) tests will measure the performance of the following OS functions:

• System Calls

• Interprocess Communication

• TCP Scalability

To run the tests see paragraph 5.1.2.5 Running the tests, below.

Maximum number of processes for these tests is 64. This test runs on one node of the computer
system. The vendor should run on the maximum of 64 processors, or the number of processors on
a node.

5.1.2.1.1 System Calls
For this test, we will perform a loop that performs the following tests. The loop will perform
several sets of iterations, starting at 64 thousand (64*1024), and doubling until the max value of
processors is reached. For example, for 1 processor, 64K iterations would be run. For 2
processors, a new process will be forked and 64K iterations will be run out of both the parent and
child, for a total of 128K. For 4 processors, 4 processes will run a total of 256K iterations.
Maximum number of processors is 64. Each set will be timed independently, and results will be
put into the results folder, in a file named results_syscl.

Results are printed in clock ticks, which is the number of clocks per second, usually 100. This
program uses the open, close, read and write commands. See section 5.1.2.5 below for details on
running this test.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
15

Test Request Sizes

Open a file

Write 1 integer number to the file 1 integer

Close the file

Open the file

Read 1 integer from the file 1 integer

Close the file

5.1.2.2 Interprocess Communication

For this test, we will open a UNIX pipe between two processes, and transfer 2 GB of data in
different block sizes. The program creates a new process using the fork command. The child that
was forked writes to the pipe, and the parent reads from the pipe. The data is read in block sizes as
shown in the table below.

The program will perform several iterations of the test. Each iteration contains four (4) 5 GB
transfers using the block sizes in the table. The number of iterations is based on the number of
processors in the Makefile. The results are placed in the results folder in a file named results_pipe.
The results are reported in power of 2 intervals. For example, for a 16-processor input, results
would be reported for 1, 2, 4, 8, and 16 processes. The results will also check one number that is
transferred through the pipe to verify the correct number is being received.

Results are printed in clock ticks, which is the number of clocks per second. A tick is usually
defined as .01 second. This program uses the pipe(), read and write commands. See section 5.1.2.5
below for details on running this test.

Test Block Sizes

Open pipe, write 2 GB 512, 1024, 2048, 4096

5.1.2.3 TCP Scalability Test

For this test, we create a TCP socket, and transfer data through the socket in different sizes. The
test opens the socket and transfers 128 MB of data through the socket. This test utilizes the
socketpair, send and receive commands. The fork command is used to create a new process. The
parent process receives the data the child process sends.

The program will perform several iterations of the test. Each iteration contains four (4) 2 GB
transfers using the transfer sizes in the table. The number of iterations is based on the number of
processors in the Makefile. The results are placed in the results folder in a file named results_tcpsc.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
16

The results are reported in power of 2 intervals. For example, for a 16-processor input, results
would be reported for 1, 2, 4, 8, and 16 processes.

Tests Requests Sizes

Write data through a TCP socket and read data on other end 4K, 16K, 32K, 64K

Results are printed in clock ticks, which is the number of clocks per second, usually 100. This
program uses the socketpair, send and receive commands. See section 5.1.2.5 below for details on
running this test.

 ANSI C compiler, POSIX compliant, is required.

5.1.2.4 Resource Estimates

Each iteration of the tests (syscl, pipe & tcpsc) can take over 5 minutes, and this time is doubled for
each iteration, so a 16 processor test would run 5 times (2 to the 5th), and would take 25 minutes
assuming perfect scaling of processes to 16 processors. The full test will probably take much
longer than this.

5.1.2.5 Running the tests

All tests are run from a single interactive script and can be run in the background. The script do_os
is to be run. The script will create a directory named osbench. YOU MUST UPDATE THIS
SCRIPT!!! The do_os script has one variable at the top, on line 3. The variables must be set to
match your system configuration. The variable PROC_PER_NODE is the total number of
processors in the computer node. This number determines how many processes to create when
running the benchmark.

The following must be in your default path:

• Compiler

• Default command such as make

In the Makefile, the user may add any source, library, or compiler flags in their section. If the
vendor does not have a section, they may make a section. (Each vendor has a section for flags, all
are commented out).

make clean will remove all object, results, and core files, and leave the *.c files, Makefile and do_os
command file. This is used to rerun all the tests.

make clobber will remove all files including c source files and results files. It will also remove the
osbench directory.

make tar will make a tar file with all the files in the osbench directory, including the results
directory.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
17

To run a program independently, type:

make progname.c

This will create the object program.

To run syscl, pipe, or tcpsc, you will need to add the number of processors, i.e.

syscl 16

This would run the syscl program with 16 processors.

5.1.2.6 Results

There will be three results files, one for each of the tests. Results will be put in osbench/results.
These files will be the results of the operating system benchmarks.

5.1.2.6.1 Results_syscl
The results of the system call benchmark will have several sections, each section for a set of
iterations. The number of processors selected is printed, and the size of an integer. A test number
is printed out to verify the same number written was read. The program will print out a time for
every process that is run. If 64 processors are input, the final step will have 64 sets of results. The
clock ticks will be printed out, normally 100. The results are in clock ticks. The number we are
interested in is the diff. This is the benchmark time in clock ticks of a second.

5.1.2.6.2 Results_pipe
The results of the pipe benchmark state the number of processors used, then several sets of
iterations. The iterations have four sets of timings, one for each block size listed in the pipe section
table above. Each set of timings will have a time for every process that was run. If 64 processes
were input, the final set of timings will have 64 processes. Larger block sizes should have faster
times (smaller numbers). The times are in clock ticks, which is usually 100ths of a second. Divide
the times by 100 to get seconds.

5.1.2.6.3 Results_tcpsc
The results of the TCP transfer benchmark state the number of processors used, and then several
sets of iteration times. Each of the iterations contains four timings. The timings are for the different
transfer sizes listed in the tcpsc section table above. Each set of timings will have a time for every
process that was run. If 64 processes were input, the final set of timings will have 64 processes.
The larger transfer sizes should have faster times (smaller numbers). The times are in clock ticks,
which is usually 100ths of a second. Divide the times by 100 to get seconds.

5.1.3 Memory Tests

The purpose of the memory test is to test the maximum bandwidth the processor can obtain from
different levels of the memory system. There are two tests; one test performs loads and stores
across large data sets. The other test runs a processing function across a large data set.

It is strongly recommended that this test be run on a system with exactly 128 processors. If a
vendor runs on a system with greater than 128 processors, the vendor cannot disable processors to
achieve faster performance, unless that is a configuration they are bidding. The vendor must
guarantee the benchmarks will obtain the same results on a system with only 128 processors.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
18

5.1.3.1 Descriptions

There are two components of the memory test, a load and store test, and a processing test. They are
named MEMBench Load and Store (MEMBench.LS) and MEMBench Processing
(MEMBench.P). The load and store test will perform loads and stores across several large data set
sizes. The processing test will perform processing function across several large data set sizes.

MEMBench.P is coded in both OpenMP and MPI. The vendor may use whichever code provides
the best performance. The MEMBench.P data set is COMPLEX*8, (128 bit complex words).

MEMBench.LS is written in MPI.

5.1.3.1.1 MEMBench.LS
The memory hierarchy performance is being tested as memory usage scales from 1 processor to
128 processors. The test is written using MPI, and OPEN MP.

The memory benchmark is designed to achieve an understanding of the memory system
performance. The test will run automatically, but will cycle through several tests with several data
set sizes.

MEMBench
Load and store test

Test Data Set size
1 (2K x 2K) 64 MB
2 (4K x 4K) 256 MB
3 (8K x 8K) 1 GB
4 (16K x 16K) 4 GB
5 (32K x 32K) 16 GB

MEMBench.LS will run on 1, 2, 4, 8, 16, 32, 64, and 128 processors. The benchmark will run
automatically from the run script.

5.1.3.1.2 MEMBench.P
This performs a 2D FFT across several data sets, and several sets of processors. The memory
hierarchy performance is being tested as memory usage scales from 1 processor to 128 processors,
utilizing a large portion of the memory on a node. The test performs a 2D FFT, which involves an
FFT, a transpose, and another FFT. The test is written using MPI, and OPEN MP. Some of the
characteristics of the test are as follows:

1. The data is complex *16 (128 bit complex words)

2. The test runs five (5) different data set sizes, but all the data set sizes are square. The data set
sizes are listed in the table below.

3. The test runs all five data set sizes on different numbers of processors, starting at 1 and
doubling each time, up to 128 processors.

4. The program will automatically halt when there is not enough memory available, for example
if your computer has 1 GB per processor, if the vendor is running on 1 processor, and the data
set size is larger than 1 GB, the processing will halt and the processing on the next larger set of

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
19

processors will begin. Vendors will not be punished if codes do not run on processors with
more than 1 GB.

The vendor is free to optimize this code by inserting library routines. But, we do require the time
for the FFT and for the transpose independently (as in the code provided). These library routines
must be released versions, please include the release number with your submission. Also, the
vendor must be able to compute the correct answer for the three routines. Overly optimistic
benchmark results must be accompanied by an explanation of how the computer is able to achieve
high efficiency in those routines.

This FFT does not perform a comparison of results, but a comparison may be performed if their
machine is purchased. Vendor guarantees the accuracy of the FFT, while achieving the reported
benchmark time.

This program will run programs on data set sizes of

Processing test
Test Data Set size
1 (2K x 2K) 64 MB
2 (4K x 4K) 256 MB
3 (8K x 8K) 1 GB
4 (16K x 16K) 4 GB
5 (32K x 32K) 16 GB

MEMBench.P will run on 1, 2, 4, 8, 16, 32, 64, and 128 processors. The benchmark will run
automatically from the run script.

As mentioned above, inserting library calls or library routines for these algorithms may optimize
these three routines. The vendor can only use released library calls. The algorithms must run on
the supplied data set.

The transpose (CTM) is an “in place” algorithm. The Vendor may use an “out of place” algorithm,
providing the data integrity is maintained. If the vendor uses an out of place algorithm, they must
state this in the response.

5.1.3.1.3 Requirements
A Fortran compiler is required to run these tests. Also, the benchmark requires 512 MB of memory
per processor.

5.1.3.1.4 Resource Estimates
The entire benchmark will run in approximately three hours, depending on the architecture and the
amount of RAM.

5.1.3.1.5 Running the tests
For more details, please read the README file in the membench directory.

When MEMBench.tar is extracted, there will be a directory created called membench. Change
directory to the MEMBench. In the makefile you will find sections for Linux, Cray, IBM, SGI,
Compaq, and Sun compiler flags and library search paths. Uncomment the section which is

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
20

appropriate and edit it for optimal performance on your platform, or if necessary add a new section.
Type “make all” to make the programs.

There are three scripts to run different versions of MEMBench. Vendors are required to run the
Load and Store test, and are required to run one version of the processing test.

1. run_mem1.ll (run F90 load-store tests for 1,2, 4, 8, 16, 32, 64, 128 CPUs)

2. run_mem3.ll (run F90 OpenMP SMP 2-D FFT for 1,2, 4, 8, 16, 32, 64, 128 CPUs)

3. run_mem4.ll (run F90 MPI 2-D FFT for 1, 2 4, 8, 16, 32, 64, 128 CPUs)

After you have run the tests, type 'make tar' in the membench directory. This will create a tar file
named 'membench.tar'. This is what is to be returned. This tar file will contain the results and the
source files, which are to be returned.

5.1.3.1.6 Results

The output of the tests is written into the 'results' directory. There will be sixteen output files with
results. Each processor count will have an output file, and there are two sets of outputs.

The MEMBench.LS test will contain the following information.

• The wall clock time

MEMBench.P test will contain the following information for the FFT, the Transpose, and for the
overall time.

• The wall clock time for FFT

• The wall clock time for the transpose

• The wall clock time for the entire test

5.1.4 Network Tests

The network tests are designed to test the interconnect between CPUs and nodes. Since most of the
codes running at MSRCs require a large number of processors, this test is important for determining
system performance.

The NETWORK synthetic benchmark consists of the following five Message Passing Interface
(MPI) tests:

• A Point-to-Point Blocking test

• A Point-to-Point Non-blocking test

• A Point-to-Point Persistent Non-blocking test

• A Broadcast test

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
21

• An Allreduce test

5.1.4.1 Description

What follows is a description of these tests, followed by a description of how to run these tests.

5.1.4.1.1 Point-to-Point Blocking Test
This test uses a master-slave approach. The master sends a sequence of messages consisting of n
real*8 numbers to the slave. Then when the slave has received all the messages, the slave sends
back a one-word reply. Both the sends and receives are blocking. This test failed on some of the
centers platforms until we set the MPI environment variable MPI_MSGS_PER_PROC to a number
greater than 4096, which is the maximum number of messages sent. This problem occurred for
small messages, because the vendor's implementation of MPI_SEND placed the message in the
header, and was not really a blocking send. All the messages sent are a power of 2 number of
real*8 numbers starting at 2. The program runs on from 16 to 512 processor subsets. For an
example of 16 processors, it uses a single master, and sequences through 15 slaves, one at a time,
and records the minimum and maximum MBytes rate for each message size. This technique will
show performance variations because of asymmetries in the network.

5.1.4.1.2 Point-to-Point Non-blocking Test
Application programmers usually prefer to use non-blocking message passing in their programs.
All the messages sent are a power of 2 number of real*8 numbers starting at 2. The program runs
on from 16 to 512 processor subsets. For an example of 16 processors, it uses a single master, and
sequences through 15 slaves, one at a time, and records the minimum and maximum Mbytes rate
for each message size. This technique will show up performance variations because of
asymmetries in the network.

5.1.4.1.3 Point-to-Point Persistent Non-blocking Test
In many applications, the same message patterns are repeated over and over, such as a time step
loop in a transport code. Because of the overhead in setting up a communication, MPI provides a
"persistent" methodology to reduce the start-up time in communication. This test attempts to
quantify the savings, and performs the same message passing as the previous test, but uses the
"persistent" interface routines.

All communication is non-blocking. All the messages sent are a power of 2 number of real*8
numbers starting at 2. The program runs on a from 16 to 512 processor subsets. For an example of
a 16 processors it uses a single master, and sequences through 15 slaves, one at a time, and records
the minimum and maximum MBytes rate for each message size. This technique will show up
performance variations because of asymmetries in the network.

5.1.4.1.4 Broadcast Test
This test performs a broadcast of a sequence of messages with a size of a power of two of real*8
numbers starting at 2. It uses the processor with MPI rank 0 as the root. The test uses all available
processors. In this test the minimum and maximum MBytes rates are of course the same, since a
master-slave strategy is not used as in the previous tests.

5.1.4.1.5 AllReduce Test
This test performs an allreduce of a set of local arrays whose size is a power of 2 real*8 numbers
starting at 2. It uses the processor with MPI rank 0 as the root. The test uses all available processors.
In this test the minimum and maximum MBytes rates are of course the same, since a master-slave
strategy is not used as in the previous tests.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
22

5.1.4.2 Requirements

ANSI C compiler, POSIX compliant, and MPI support is required to run these tests

5.1.4.3 Resource Estimates

All the tests may require 256 MBytes of memory for each processor. The message-passing tests
may require a search path to link the MPI library. The Fortran 90 coded tests use the POSIX
standard wall-clock timing routine "get_system_clock" and the C coded tests use the C-callable
routine "get_time_of_day." Netbench will require about 30 minutes to run.

5.1.4.4 Running the tests

In the Makefile you will find sections for Linux, Cray, IBM, SGI, Compaq, and Sun compiler flags
and library search paths. Uncomment the section which is appropriate and edit it for optimal
performance on your platform, or if necessary add a new section. If you use GNU's make (gmake),
edit the appropriate section of the file "cmplrflags.mk." To make all of the netbench test enter the
command: make. You will find a subdirectory of netbench called scripts. It contains two simple
interactive run scripts called "do_net1", and "do_net2." You will have to edit both scripts to edit the
line, which does a cd to the working directory, and possibly redefine the environment variable
RUNCMD, which invokes a MPI run on your platform.

The first script "do_net1" will create a subdirectory called "results" (if it does not exist), and run the
Fortran 90 coded tests. The second script "do_net2" will execute the C coded tests. After you have
run all the tests, enter the command: make tar. This will create a tar file called "netbench.tar",
which is the deliverable for netbench. It will contain the source code and the results files, which are
used to evaluate the benchmark.

5.1.4.5 Results

All tests (both Fortran 90 and C) report a size (called n), and minimum and maximum Mbytes
count. The minimum and maximum will possibly be different for the point-to-point tests, but
should be identical for the collective tests (broadcast and allreduce).

5.1.5 CPU Tests

The CPU tests will characterize the performance of the CPU in several modes, yielding an
assessment of both CPU and compiler performance and revealing compiler deficiencies. Since the
MSRCs use the systems in a production environment, a stable compiler is a requirement.

The CPU tests examine 19 fundamental computation kernels, comparing their performance with
respect to precision (32-bits versus 64-bits), language (C versus F90), and cache effects (cache-
friendly versus cache-unfriendly). There is also a BLAS benchmark, and three benchmarks that
require more than one processor, scaling up to a maximum of 512 processors.

5.1.5.1 Descriptions

The CPU synthetic benchmark tests consist of the following:

• 19 simple kernels coded in Fortran 90 and C which have been coded for maximal cache
re-use

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
23

• 19 simple kernels coded in Fortran 90 and C which have been coded for minimal cache
re-use

• The BLAS routines SAXPY, DAXPY, SGEMV, DGEMV, SGEMM, DGEMM

• The parallel ScaLAPACK Gaussian Elimination Solver PDGESV

• The parallel ScaLAPACK routine PDGEHRD, which reduces a non-symmetric matrix to
upper Hessenberg form for eigenvalue calculations

• A "C" coded parallel Conjugate Solver of Laplace's Equation

What follows is a description of these tests, followed by a description of how to run these tests.

5.1.5.1.1 Cache-Friendly Fortran 90 and C Kernel Tests
The 19 tests contained in this suite are derived from simple kernels devised by the PARKBENCH
Committee headed by Roger Hockney in 1994. We have coded these simple loops in both Fortran
90 and C in such a way that allows maximal cache re-use. These loops are tested for vectors with
length of a power of 2 starting at 2. These tests are performed in 32-bit and 64-bit precision in both
Fortran 90 and C, for a total of 68 tests.

5.1.5.1.2 Cache-Unfriendly Fortran 90 and C Kernel Tests
The 19 tests contained in this suite are a modification of the first suite, which minimizes cache re-
use by adding another dimension to the data so that new data is read and written at each stage.
These loops are tested for vectors with length of a power of 2 starting at 2 as well. On cache-based
systems there is an obvious degradation in performance between the cache-friendly suite and cache-
unfriendly suite. These tests are also performed in 32-bit and 64-bit precision in both Fortran 90 and
C, for a total of 68 tests.

5.1.5.1.3 Native BLAS Tests
This suite tests the performance of the most important Basic Linear Algebra Subroutines (BLAS),
which are commonly used in LAPACK and ScaLAPACK. The first level BLAS routine _AXPY
is tested in its 32-bit (SAXPY) and 64-bit (DAXPY) real forms; the second level BLAS routine
_GEMV is tested in its 32-bit (SGEMV) and 64-bit (DGEMV) real forms; and the third level
BLAS routine (_GEMM) is tested in its 32-bit (SGEMM) and 64-bit (DGEMM) real forms. The
driver is written in Fortran 90 and the code must be linked to the vendor's native version of the
BLAS for optimal performance. Each of the BLAS is tested for vectors or arrays with size of a
power of 2 starting at 2.

5.1.5.1.4 ScaLAPACK Tests
A survey of the CTA leaders showed that a number of important projects use ScaLAPACK to solve
dense linear systems and eigenvalue problems; therefore, we have included a test of the parallel
performance of the ScaLAPACK asymmetric matrix Gaussian Elimination solver PDGESV, and
the asymmetric matrix reduction to Hessenberg form routine PDGEHRD used to find eigenvalues.

Both the LU solver and the Hessenberg Reduction solve the following problem set:

• 1024 x 1024 matrix on a 2 x 8 processor grid (16 PEs)

• 2048 x 2048 matrix on a 2 x 16 processor grid (32 PEs)

• 4096 x 4096 matrix on a 2 x 32 processor grid (64 PEs)

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
24

• 8192 x 8192 matrix on a 2 x 64 processor grid (128 PEs)

• 16384 x 16384 matrix on a 2 x 128 processor grid (256 PEs)

• 32768 x 32768 matrix on a 2 x 256 processor grid (512 PEs).

5.1.5.1.5 Parallel Conjugate Gradient Solver Test
We have coded a parallel Conjugate Gradient solver in C to solve Laplace's equation on a cubic
grid. Each test performs 1000 CG iterations. We solve the following problem sets:

• 3d Laplacian on 2 x 2 x 4 processor grid (16 PEs)

• 3d Laplacian on 2 x 4 x 4 processor grid (32 PEs)

• 3d Laplacian on 4 x 4 x 4 processor grid (64 PEs)

• 3d Laplacian on 8 x 4 x 4 processor grid (128 PEs)

• 3d Laplacian on 8 x 8 x 4 processor grid (256 PEs)

• 3d Laplacian on 8 x 8 x 8 processor grid (512 PEs)

5.1.5.2 Requirements for the CPU tests

ANSI C and Fortran 90 compilers, POSIX compliant, are required.

5.1.5.3 Resource Estimates for the CPU tests

All the tests may require 256 MBytes of memory for each processor. The BLAS test requires
adding a search path to the native BLAS on the platform. The ScaLAPACK test requires adding a
search path to ScaLAPACK or its equivalent in some library, and the ScaLAPACK test has been
written with a minimum of miscellaneous routines

For portability, the ScaLAPACK test and the Conjugate Gradient test may require a search path to
link the MPI library. The Fortran 90 coded tests use the POSIX standard wall-clock timing routine
"get_system_clock" and the C coded tests use the C-callable routine "get_time_of_day."

The tests in cpubench will require about 2.5 hours to run.

5.1.5.4 Running the CPU tests

This tar file will create a directory called cpubench which will contain a README file, the Fortran
90 and C source code, two header files, a Makefile (and a GNU makefile if you use GNU's make).

In the Makefile you will find sections for Linux, Cray, IBM, SGI, Compaq, and Sun compiler flags
and library search paths. Uncomment the section which is appropriate and edit it for optimal
performance on your platform, or if necessary add a new section.

If you use GNU's make (gmake) edit the appropriate section of the file "cmplrflags.mk."

To make all of the cpubench test enter the command: make

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
25

You will find a subdirectory of cpubench called scripts. It contains three simple interactive run
scripts called "do_cpu1", "do_cpu2", and "do_cpu3." You will have to edit all three scripts to edit
the line, which does a cd to the working directory.

The first script "do_cpu1" will create a subdirectory called "results" (if it does not exist), and run all
of the single-CPU tests (which consists of 136 tests).

The second script "do_cpu2" will execute the ScaLAPACK test, using a command called
"RUNCMD." You may have to add an appropriate form of this command such as poe, mpirun,
pam, mprun, etc.

The third script "do_cpu3" will execute the Conjugate Gradient solver, and you may have to define
the variable RUNCMD there appropriately as well for your platform.

After you have run all the tests, enter the command: make tar

This will create a tar file called "cpubench.tar", which is the deliverable for cpubench. It will
contain the source code and the results files, which are used to evaluate the benchmark.

5.1.5.5 Results for the CPU tests

All results are written to the results subdirectory. For instance, test fd101 is written to
cputest/results/fd101.out. The results for all tests consist of a size (called n), a wall-clock time,
given in seconds, and a MFLOPs count, based upon estimating the number of flops in each test and
dividing by the wall-clock time. The ScaLAPACK test reports only the wall-time and the MFLOPs
count, and the Conjugate Gradient test reports the wall-clock time, the MFLOPs, and the number of
CG iterations and the norm of the final residual.

5.2 Instructions for Application Tests

Seven (7) actual applications were chosen this year based on expected usage and algorithmic
considerations. The applications are AERO, Cobalt-60, RF-CTH, GAMESS, HYCOM, NAMD,
and Electromagnetic Solver.

5.2.1 Technical Point of Contact for Application Tests

William A. Ward Jr.
Computer Sciences Corp

Voice: (601) 634-2512
Fax: (601) 634-3808
E-mail: William.A.Ward.Jr@erdc.usace.army.mil

5.2.2 Application Test Overview

This section provides guidance to vendors for preparing, conducting, and documenting the
application portion of the HPCMP TI-04 benchmark test. Vendors may elect to run only a subset of
the application tests. The Government-provided directory structure described below will provide
the testing framework. Vendors shall augment this electronically supplied framework with test
results and documentation and then return it to the HPCMPO / Government.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
26

An important part of the test framework is contained in the ./ded directory. In this directory is a
subdirectory for each application. In each application subdirectory is a subdirectory for each test
case (input data set). In each test case subdirectory is a subdirectory to contain test results for a
particular number of processors. For example, the directory ./ded/gamess/standard is the directory
for the standard test case of GAMESS and it contains subdirectories names 016, 032, 048, and 064.
In each of these processor count subdirectories are sample batch and submit scripts. These latter are
automatically generated from m4 template files. Vendors are strongly encouraged to use the
template files to create their batch and submit scripts. From the vendor perspective, this will reduce
the work required to create the scripts and aid in conformance to the Government's reporting
requirements. Even after the scripts are (re)generated, it is permissible to manually modify them.
However, the Government has endeavored to minimize the necessity of such modifications. As has
already been noted, vendors may select the processor counts most appropriate for their proposed
system.

A few words about the m4 macro processor are appropriate at this point. m4 is a standard UNIX
utility. As in the C preprocessor, to which it is similar in function, and unlike the shells, macro
variable names do not require a leading dollar sign. It is more powerful than the C preprocessor in
the areas of arithmetic and conditionals.

5.2.3 Directory Structure

The test framework is a directory hierarchy used to supply vendors with guidance in conducting the
tests. This guidance will include (a) either actual source programs or directions for obtaining such,
(b) input data from example runs, (c) scripts and directions for executing the programs, and (d)
output data to check the results. The directory hierarchy is described below.

./README is a text copy of this document (this is the definitive version).

./TAR produces the tar file of benchmark results to be returned to the government. This file may be
edited to include additional files; do not return input files, reference files, unmodified source files,
or binary executables.

./app contains one subdirectory for each application code/kernel. Source code and executables
reside here. Source code for CTH, GAMESS, and NAMD must be obtained from the code owners
as described in the README files for those applications.

./app/<APP> where <APP> is an application name, e.g., ./app/cth. This directory contains the
source distribution of application <APP>. The files/subdirectories in these directories will vary
from one application to the next.

./app/<APP>/README contains documentation for installing and executing application <APP>.

./ded contains one subdirectory for each application. Results of the dedicated application tests reside
here. It is important that vendors conform to the structure and use of this particular directory.

./ded/Build is the primary Bourne shell script for (re)building subdirectories for test results; vendors
will need to modify this script if they elect to run only certain application tests or if they change the
numbers of processors used in some of the tests.

./ded/Clean is a Bourne shell script for cleaning test result subdirectories. Depending on the
modifications to Build, vendors may need to modify this script as well.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
27

./ded/Defs.m4 is an input file to the m4 macro processor; the definitions within this file may need to
be modified.

./ded/Jobbat.m4 is an input file to the m4 macro processor. This is the master template for all of
the batch files; it must be modified as appropriate for a particular scheduler. The supplied example
works for PBS on an SGI Origin 3000. Commands common to all scripts, e.g., setting certain
environment variables should be placed here. As part of the script generation process, this file
includes a Jobbat.h file described below that is specific to a particular application. The echo
commands are part of the Government’s reporting requirements and must not be deleted.

./ded/Jobsub.m4 is an input file to the m4 macro processor. This is the master template for all of
the submit files; it must be modified to include the correct queue submission command. Note that
the resulting submit file creates a ``.qdate'' file that is used by the ``.bat'' file.

./ded/Makefile is the master makefile for the test directory and script generation process; it is
unlikely that this file will have to be modified.

./ded/Makefile.* are other makefiles that are automatically installed in the directory hierarchy as
part of the script generation process. Again, it is unlikely that these files will have to be modified.

./ded/<APP> is the top-level directory for tests results from application <APP>; e.g., ./ded/gamess.

./ded/<APP>/Jobbat.h contains commands for executing this particular application. At script
generation time (not script execution time), this file is included in the Jobbat.m4 file noted above
and various macro variables are expanded. In some cases, the command to execute a program in
parallel, e.g., mpirun or poe, is embedded in this file. In other cases this file invokes a script
containing the execute command; typically, such a script is somewhere in the ./app/<APP>
directory and is supplied either by the Government benchmark team or the code developer.
Regardless of its location, it must be modified to suit a particular vendor's parallel operating
environment.

./ded/<APP>/Jobsub.h contains commands to be performed before submitting a job for this
particular application. At script generation time (not script execution time), this file is included in
the Jobbat.m4 file noted above and various macro variables are expanded. In many cases no such
commands are necessary, and so the file is not present.

./ded/<APP>/Makefile is an automatically installed makefile and should not require
modification.

./ded/<APP>/<CASE> is the top-level directory for all runs of test case <CASE> of application
<APP>; e.g., ./ded/gamess/cycl.

./ded/<APP>/<CASE>/Makefile is an automatically installed makefile and should not require
modification.

./ded/<APP>/<CASE>/<NP> is the lowest level test case directory; e.g., ./ded/gamess/cycl/024. It
will contain automatically generated ``.bat'' and ``.sub'' files. Actual test runs should be performed
in these directories, and output files preserved according to the directions in the README files for
the various applications. This directory and all of its contents will be destroyed when the Clean
script is executed.

./ded/<APP>/<CASE>/<NP>/*.bat is the automatically generated batch file for this particular run;
it may be manually edited, but if the Clean script is executed, all changes will be lost.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
28

5.2.4 Directions for Application Tests

1. Install each application code <APP> by following the instructions in the
./app/<APP>/README file.

2. Modify the ./ded/Jobbat.m4 file as necessary to conform to a particular
hardware/software/scheduler configuration.

3. Modify the ./ded/Jobsub.m4 file as necessary.

4. Determine the location of the command invoking the parallel operating environment,
whether in Jobbat.h or in a file in the ./app directory and change it to the appropriate
command.

5. Execute the Clean command within the ./ded directory.

6. Edit the Build command to generate scripts only for the applications and processor counts
selected. Extraneous lines may be deleted or commented out. After completing these
changes, execute Build within the ./ded directory.

7. If necessary, make manual modifications to the individual batch and submit files. If all
else fails, edit the original samples directly.

8. Submit the batch file using the submit file from each ./ded/<APP>/<CASE>/<NP>
directory to complete the test. You may rerun the script as necessary, but it is not
advisable to have more than one job active in a given directory at the same time.

5.2.5 Application Test Cases

Vendors are invited to provide benchmark timings for the complete set of application test cases.
However, vendors are also encouraged to submit results of some subset of the application test cases
if the complete set cannot be run. Overall HPC system solutions that are optimized for subsets of
DoD application codes will be considered. These runs must be performed in dedicated mode; i.e.,
with no other jobs running on the system. No interactive jobs are allowed.

5.2.6 Required Documentation

Many files will be generated during each run. Most of these files, including copies of the
executables and input files, may be deleted after the run concludes. However, the following files
must be preserved:

1. The script used to submit the batch file to the batch queue; this is the ``.sub'' file

discussed above.

2. The batch file so submitted; this is the ``.bat'' file discussed above.

3. Any output written to standard output and standard error; these should be combined
into a single file with suffix ``.out''. Note that the output of the echo and ls commands
embedded in the automatically generated ``.bat'' file must appear in this listing.

4. Any other files as specified in the application's README file.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
29

The performance data for each run must be filled in the table in Appendix A. All times must be
reported in seconds. It must be possible for the Government to verify the results in this table by
examining program output. Specifically, the elapsed wall times reported in the table must be
calculated from the time stamps produced by the echo statements embedded in the ``.bat'' files.
Vendors are welcome to provide other data regarding job and system performance if they so
choose.

Finally, each vendor shall provide complete hardware and software specifications of the system.
This specification includes, but is not limited to, the number of CPUs, the clock speed in MHz of
each CPU, the number of front-end and batch nodes (if applicable), the total system memory in
GBytes and how it is configured (local, NUMA, global, etc.), the total disk storage in GBytes and
how it is configured (local, global, etc.), operating system compiler versions, and a description of
the architecture of the CPU, memory hierarchy, and overall system. This latter item may include
descriptions of such features as pipeline structure, dynamic instruction scheduling capabilities,
cache sizes, cache coherence mechanisms, interconnects between processors, subgroupings of
processors into symmetric multiprocessors, and software support for clustering, to name but a few.
If the vendor chooses to supply some or all of this description in the form of a technical report or
white paper, the Government will accept a PDF document instead of text.

Table of files to return

File to be returned Comment

Synthetic tar file Contains results of all synthetic benchmarks and
directories, subdirectories.

Application benchmark results in softcopy Results of application results in Excel
spreadsheet

Application benchmark results in hardcopy Hardcopy of all application results (section 6.2)

Configuration tables in softcopy Softcopy of all configuration tables (Section
6.1)

Configuration tables in hardcopy Hardcopy of all configuration tables. (Section
6.1)

Patch list Patches and their descriptions

List of changes to Application Programs,
Synthetic benchmarks, Make files, and run
scripts

If none, state none, see section 4.7, and
synthetic sections

Instructions for building and installing the test
configurations

Extrapolations for CPUBench and NETBench
out to 512 processors, unless you have a
benchmark configuration of 512 processors (or
larger)

Use separate document.

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
30

Three sets of data should be created, and one set should be sent to each of the following locations:

DoD High Performance Computing Office
Attn: Contracting Officer

1110 N. Glebe Rd., Suite 650
Arlington VA 22201

(703) 812-8205

Instrumental Inc
Attn: Kim Payne
2748 E 82nd St

Bloomington, MN 55425-1365
(952) 345-2822

William A. Ward Jr.

C/o Ms. Daffney Wells
Computer Sciences Corp

3530 Manor Drive, Suite 4
Vicksburg, MS 39180

(601) 634-2512

6. Appendix A: Required Table submissions and formats

The timing for the Application benchmarks should be provided in softcopy and hardcopy format.
The softcopy format is provided in the MS Excel spreadsheet named application_bm_results.xls.
There are two workbooks in this spreadsheet. Tabs at the bottom of the spreadsheet access the
workbooks. For these application benchmarks there are the following tables:

1. Edit, compile and link time table Note: Please include timing for each application that is
built including applications that require multiple builds for each grid size and
performance.

2. Performance benchmark timing table.

6.1 Configuration Tables

The following configuration tables are to be filled out in both softcopy and hardcopy. These tables
are provided in an attachment named configuration_tables.doc.

CPU Table

CPU Benchmark
System

Proposed
System

What is the CPU
clock rate?

What is the CPU
instruction issue
rate?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
31

What is the
number of
floating point
units?

What is the
number of
integer units?

What is the size
and type of the
internal caches?

What is the
maximum SMP
CPUs?

How many
hardware
counters are
supported and
what is the
number of
counter that can
be accessed per
run?

Memory Table

Main
Memory

Benchmark
System

Proposed
System

What is the
maximum main
memory
performance for a
single CPU?

What is the total
main memory
performance to all
CPUs?

Is bandwidth and
latency consistent
across all CPUs
and all of memory
(If not please
explain difference
and techniques to
minimize latency.
E.g. memory
placement issues)?

List the supported
memory size(s)

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
32

How many total
memory
banks/sections are
there?

Cache
Memory

Benchmark
System

Proposed
System

What is the
bandwidth to cache
memory from a
single CPU and
multiple CPUs if
they share the same
cache?

What is the startup
latency for cache?

What is the cache
coherency
bandwidth?

What is the size of
the cache line?

What is the cache
to main memory
bandwidth per
cache and for all
caches?

What are the cache
line sizes for all
caches?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
33

System Table

OS Questions Benchmark
System

Proposed System

What is the size of the
system page for standard
user applications

Does TCP/IP stack use
DMA transfers (e.g. Zero
Copy TCP)?

What is the maximum
number of CPUs supported
by the OS?

What is the maximum
LUN size supported?

What is the maximum
supported memory size for
a single application?

What is the largest I/O
request supported?

Is direct I/O supported; if
so, provide an explanation
of how to use direct I/O?

What batch scheduler used
in benchmark?

File
System/Volume
Manager
Questions (if
multiple file
systems and/or
Volume managers
are proposed
these questions
must be answered
for each file
system)

Benchmark
System

Proposed System

Does proposed file system
and/or volume manager
separate data and meta
data?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
34

Does the proposed file
system support round-robin
file allocation instead of
striping all files across all
devices?

What is the largest file
system supported and what
is the largest file system
tested?

Does the file system
support preallocation, if so
how?

What is the largest
supported file system block
size, or allocation unit?

What is the largest single
file supported

What is the largest I/O
request to system supported

What is the largest I/O
request to file system
supported

Switch Table

Switch
Questions (if
switches are
proposed)

Benchmark
System

Proposed
System

What is the performance
from any port to any port in
MB/sec?

What is the internal design?
a. Port density per board
b. Bus configuration
c. Backplane configuration
How many ISL connections
are supported?

Is translative mode
supported for loop devices?

How many buffer credits
dynamically allocated to a
port?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
35

How many buffer credits are
statically allocated to a port?

What HBAs are supported?
What tapes are supported?
What RAIDs are supported?
What is the mechanism for
port security?

What is the quantity of
security zones (e.g. can a
zone be controlled and
managed by a group? If so,
how many?)

What is the maximum
supported switch to switch
distance?

What is the maximum
supported switch to
devicedistance?

What is the board to board
latency?

What is the interboard
latency?

What is the total backplane
bandwidth?

Communication Table

Bus
Questions

Benchmark
System

Proposed System

Is the proposed bus
PCI or PCI-X (state
speed and width)?

Does the bus run full
duplex at the
specified rates
(please provide test
data showing full
duplex rates)?

HBA
Questions

Benchmark
System

Proposed System

How many ports per
HBA?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
36

What is the rated
speed of the HBA?

What is the size of
the HBA command
queue?

What is the full
duplex performance
of the HBA (provide
actual test data and
explain)?

LAN
support

Benchmark
System

Proposed System

What are the
network
interconnects
supported (list all)?

What is the
compatibility
information for each
interface?

What are the MTU
sizes for each
interface?

What is the full
duplex performance
and CPU overhead
for each interface?

Is trunking
supported and with
what interfaces and
switches?

RAID Table

RAID
Vendor
Questions

Benchmark
System

Proposed System

What is the chipset
used?

What is the internal
bus type and design,
PCI or PCI-X

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
37

Please provide cache
hardware
information and size

What is the
bandwidth for write
cache mirror?

What is the
bandwidth to disk?

What is the
processor type and
speed?

Explain how dual
active/passive
support work for
controllers, power,
and cache

What LUN count is
supported by
controller

How many hosts can
be connected per
controller?

What is the loop
count controller to
disk?

What is the load
balancing controller
to disk?

What disk types
supported?

What is the RAID
configuration (e.g.
RAID 1,5, 0+1 etc)?

What is the
controller failover
support; active or
passive?

LUN size. Please
discuss number of
TB per LUN
supported per OS
(Solaris, Win2K,
Tru64, HP-UX,
AIX)

Are the devices
chained? If so, how
many are on a
loop/bus?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
38

How do backend
loops support the
LUNs' load
balancing?

How do backend
loops address
availability of data?

Is remote copy
supported?

Provide
MTBF/MTTR/MTD
L for all supported
RAID levels

What components
can be upgraded hot
(both hardware and
software)?

Provide
alignment/block size
values supported

Provide cache
allocations supported

System settings
(provide tunable
information)

For both RAID 1 &
5 (and any others
that support
redundancy). We
want to know how
write reconstruct
works both when
there are hot spares
and when there are
not.

What HBAs are
supported and
tested?

What switches
supported and
tested?

Can the
blocksize/alignment
be changed without
taking system off-
line? If so explain
limitations.

What is the
command queue
size?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
39

What is the
maximum OPS to
disk (please provide
hardware and
software
configuration and
benchmark test
environment
including OS,
software used,
HBAs and firmware
releases)?

What is the
maximum OPS to
cache (please
provide hardware
and software
configuration and
benchmark test
environment
including OS,
software used,
HBAs and firmware
releases)?

What is the
maximum streaming
to disk (please
provide hardware
and software
configuration and
benchmark test
environment
including OS,
software used,
HBAs and firmware
releases)?

Provide information
in above 3 questions
with and without
write cache mirror if
supported

What are the cache
tunables (please
provide all
information)?

What is the caching
algorithm (separate
read/write cache,
high water marks
etc)?

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
40

6.2 Application Benchmark Results

The application benchmark results should be provided in the included spreadsheet named
application_bm_results.xls. A copy of the table is included here.

Code Test
Case CPUs

NAVO
IBM

POWER4
Marcellus

1184

AERO std
 1 16502
 2 10943
 3 9483
 4 8651
 5 8300
 6 8066
 7 7848
 8 7336

Cobalt-
60 std

 16 8337
 32 3733
 48 2409
 64 1725
 128 770
 256 384

Cobalt-
60 lg

 32 38353
 64 17327
 128 8170
 192 5190
 256 3736
 384 2471
 512 1792

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
41

GAMES
S std

 16 6774
 32 3803
 48 2798
 64 2320

GAMES
S lg

 64 11805
 128 6788
 192 4932
 256 4038
 384 3245
 512 2828

HYCOM std
 47 2344
 59 1799
 80 1392
 96 1210
 111 1080
 124 974

HYCOM lg
 234 4109
 256 3877
 314 3272

NAMD std
 16 4002
 32 2381
 48 1945
 64 1773

High Performance Computing Modernization Program Request for Information
Benchmark Instructions

TI-04 Benchmark Instructions
42

NAMD lg
 108 6208
 216 3843
 324 2958
 432 2473

O-O-
Core std

 16 10416
 32 4913
 48 3035
 64 2395

O-O-
Core lg
 128 9125
 256 4022
 384 3390
 512 2744

RFCTH std
 16 4420
 32 2492
 48 1983
 64 1529

RFCTH lg
 128 6669
 256 4852
 384 3928
 512 3074

